We study convergence to equilibrium for a class of Markov chains in random environment. The chains are sparse in the sense that in every row of the transition matrix P the mass is essentially concentrated on few entries. Moreover, the entries are exchangeable within each row. This includes various models of random walks on sparse random directed graphs. The models are generally non reversible and the equilibrium distribution is itself unknown. In this general setting we establish the cutoff phenomenon for the total variation distance to equilibrium, with mixing time given by the logarithm of the number of states times the inverse of the average row entropy of P. As an application, we consider the case where the rows of P are i.i.d. random v...